

Advanced Space Exploration

From Importing to Exporting:

The Impact of ISRU on Space Logistics

AIAA Space 2011 Conference & Exposition Long Beach, California 27-29 September 2011

Dallas Bienhoff In-Space & Surface Systems The Boeing Company 703-872-4004; 571-232-4554 Dallas.g.bienhoff@boeing.com

From Importing to Exporting: The Impact of ISRU on Space Logistics

- Lunar Development Plans
- Cislunar Transportation Architectures
- Impact on Outpost Consumables and Surface Payloads
- ETO Mass to Support Reference Mission Model
- Propellant Exports
- Architecture Comparative Assessment
- Reducing ISRU Production Requirements

Commercial Lunar Development Plans

- Bigelow Lunar Base
- Follows LEO Complex
- Lease to national agencies
- 12 18 person occupancy
- Next decade

- Shackleton Energy Company
- 12 18 person crew
- One-way deploy mission
- Water export for propellant
- 7 years after funding received

Advanced Space Exploration

Page 2

27 September 2011 1086964_Bienhoff_AIAASpace2011

Reference Mission Model for Outpost Support

- Outpost is near accessible water ice deposits
- Outpost is permanently and continuously occupied
- 4-18 person Outpost population
- 2 personnel rotation missions per year
- 2 cargo deliveries per year
- 25 year scenario for comparison
- Depot and ISRU IOC in year 11

Constellation Provides Comparative Benchmark

- LEO Depot added in year 11
- Two 4-person crew & 35 t cargo missions
- Years 11- 25

- Two 4-person crew missions with limited cargo
- Two 20.9 t cargo missions
- Years 1 10

Reusable Cislunar Transportation Architecture for Earth and Moon Propellants

1086964_Bienhoff_AIAASpace2011

RCTA Systems Sized to Deliver 25 t to Surface

System		Inert Mass (kg)	Propellant Capacity (kg)
Reusable Aerocapture Transfer Vehicle		6,665	46,177
Reusable Circumlunar Transfer Vehicle		3,301	18,706
Reusable Lunar Lander		12,479	49,917
Propellant Depots		20,000	81,600
Propellant Tank Module		3,000	22,000
Reusable Propellant Carrier		6,400	25,600

- RATV (LEO to EML1 to LEO)
 25 t to EML1; 5 to LEO
- RLL
 - 25 t circumlunar to Moon;
 0 Moon to circumlunar
- RCTV
 - 86 t EML1 departure with 12 t upon EML1 arrival

Water and Oxygen Can Be Eliminated From Earth-Supplied Consumables with ISRU

ISRU Replenishes Hygiene and Cleansing Water Lost in Recycling Process

- 90% water recycled
- 90% airlock recovered
- 50% US use assumed
 - Hygiene
 - Clothes
 - Dishes
- Egress approach drives range
 - Lower All suitlock
 - Upper All airlock

ISRU Maximizes Supportable Population and Surface Payloads for Fixed Cargo Capacity

Maximum Populations

- Constellation
 - 19 25 no ISRU
 - 52 58 w ISRU
- Constellation w Depot
 33 43 no ISRU
 - 91 100 w ISRU
- RCTA-A
 23 30 no ISRU
- RCTA-B • 12 – 20 no ISRU
- RCTA

٠

• 63 – 70 w ISRU

Constellation with Depot IOC in Year 11 Sets Comparative Benchmark

- Without LEO depot
 - 757 t/yr to LEO
 - 70% propellant
 - 24.5% flt HW
 - 5.5% cargo
- With LEO Depot
 - 773 t/yr to LEO
 - 75% propellant
 - 16% new flt HW
 - 9% cargo

RCTA-A ETO Mass Through Year 10 55% Greater than Constellation

- All Earth Propellant
 - 1177 t/yr to LEO
 - 92% propellant
 - 4.4% flt HW
 - 4.2% cargo
- All Moon Propellant
 - 87 t/yr avg to LEO
 - 0% propellant
 - 42% new flt HW
 - 58% cargo
 - 2588 t/yr ISRU water

RCTA-A ETO Mass Through Year 10 5% Greater than Constellation

- All Earth Propellant
 - 788 t/yr to LEO
 - 91% propellant
 - 4.3% flt HW
 - 4.3% cargo
- All Moon Propellant
 - 87 t/yr avg to LEO
 - 0% propellant
 - 42% new flt HW
 - 58% cargo
 - 2588 t/yr ISRU water

Propellant to Move Propellant Plus Loss Rate Exceeds Support Missions Propellant

- All Earth-A Propellant
 - 34% support missions
 - 21% propellant moved
 - 22% propellant to move
 - 23% loss
- All Earth-B Propellant
 - 31% support missions
 - 21% propellant moved
 - 26% propellant to move
 - 23% loss
- All Moon Propellant
 - 12% support missions
 - 61% propellant moved
 - 12% propellant to move
 - 14% loss
 - 138% ISRU water

ISRU for RLL Only (Min and Max) are Most Propellant Efficient RCTA ConOps

Advanced Space Exploration

Page 14

27 September 2011 1086964_Bienhoff_AIAASpace2011

ISRU Greatly Reduces ETO and Hardware Mass

Advanced Space Exploration

27 September 2011 1086964_Bienhoff_AIAASpace2011

Stoichiometric Rocket Engines in RCTA Minimizes ISRU Production Requirement

- 38% LLOx by-product eliminated
- Precludes water transport with depot propellant production
- Maximizes loss rate as all transfers are cryogenic

10 & 20 t of ISRU Water Required per t Exported to L1 & LEO with 5.5 MR; 6 t & 9 t with 8.0 MR

Export to L1 5.5 MR: 10% Loss LOx/LH Transfer 10% net export (11 t) 35% less ISRU Water

> Export to L1 8.0 MR: 1% Loss Water Transfer 17% net export (12.5 t)

Export to LEO 5.5 MR: 10% Loss LOx/LH Transfer 5% net export (41 t) 44% less ISRU Water **Export to LEO** 8.0 MR; 1% Loss Water Transfer 11% net export (49 t)

Advanced Space Exploration

27 September 2011

1086964 Bienhoff AIAASpace2011

26-34% Reduction in ISRU Production Possible

- Total Propellant Needs
 - 20-22% less propellant if MR = 8.0 vs 5.5
 - 34-41% less propellant if MR = 8.0 with water transport and 1% loss rate
- Lunar Water Production
 - 26% less if MR = 8.0, water transport, and 10% loss rate
 - 34% less if MR = 8.0, water transport, and 1% loss rate

ISRU Impact on Lunar Outpost Logistics

- 90% reduction in ETO requirement wrt Constellation
- >50% reduction in new hardware wrt Constellation
- 9 2 6 times maximum population with ISRU
- 10% and 5% ISRU water exported to L1 and LEO
- ISRU Water ~2.2 x Earth propellant for 5.5 MR RCTA
- 34% ISRU reduction if 8:1 MR, water transport, and 1% loss rate

Advanced Space Exploration