Category Archives: Business

The Climate-Change Gravy Train

How well paid are the warm-mongers? Looks like nice work to me, if you can get it, and all you have to do is go along with the politically correct status quo. I don’t know of anyone who’s done as well by scepticism. But then, the latter are being true to standards of science.

[Update a few minutes later]

The EPA person responsibility for regulating CO2 levels doesn’t know what the current level is. The country’s in the very best of hands.

A Harsh Assessment Of The Past Half Century

in space. I wouldn’t go quite so far as to say that we’ve pi**ed away fifty years — we did lay a foundation for what’s to come, but we certainly could have been a lot further along with smarter policy, actually focused on opening up space (something that US space policy has never been). Several people at the suborbital conference here have commented (as I often do) that there is very little happening today in the newspace world, at least suborbitally, that we couldn’t have been doing twenty, or even thirty years ago (though modern computer and manufacturing technology has certainly made things cheaper and faster). But we have another half century to start getting it right. I hope.

Union Versus Business Contributions

It’s not quite the way Jon Chait imagines:

…the list reads:

Democratic/Union Goon proxy: $51 million

Death Star, Inc.: $46 million

Union Goons (public sector): $43 million

The Committee to Re-Inflate the Bubble by Electing Democrats: $38 million

The Bankers Who Elected Barack Obama: $33 million

Democratic trial lawyers: $33 million

Union Goons: $33 million

Union Goons (public sector): $32 million

Union Goons: $30 million

Union Goons: $30 million

Oops.

Suborbital Provider Session

Jeff Greason, XCOR Aerospace:

Lynx two seater, pilot plus one. 24-foot wingspan, 30-foot length. Capable of multiple missions. Learned a lot from EZ-Rocket and X-Racer, both technically and regulatorily. Uses non-toxic 3N22 thrusters. Getting ready to start fabrication of airframe. Mark I is prototype (60 km altitude), Mark II is production (100 km). Primary difference in thermal for entry.

George Whitesides, Virgin Galactic:

Richard Branson’s American space company. Two-stage to suborbit, uses a carrier aircraft which releases space vehicle at 50,000 feet, to baseline 110 kilometers, then deploys wings to allow passive entry. Based on winning X-Prize vehicle, gentle runway landing, is fully funded. 2100 cubic feet of usable space (medium-class bizjet), ability to mount instruments externally, twelve windows. Interior still under design. Showing short video of glide flight. Good vehicle characteristics. Shows rocket motor test and dedication of Spaceport America runway (named after Bill Richardson. For now).

Neil Milburn, Armadillo Aerospace:

Showing Super-MOD vehicle, which flew for the LLC Challenge, but has an aeroshell. Project Morpheus for NASA was Super QUAD. Last six months spent on a tube vehicle (highest aspect ratio of any Armadillo behicle I’ve seen) — fully recoverable, lands with chutes. ~30 feet tall. Incorporates lessons learned over the past ten years. Can be clustered and staged (inspired by Lutz Kayser’s OTRAG work). Think can get to 500 km with cluster. Suborbital Space Transport (SOST) next project, ultimately man capable for two people with observation windows. Eight engines, designed to come down as one piece, but cabin is separable in emergency. Most hardware ready to go together, so expect fly early fall this year.

Dan Christiansen, Blue Origin:

New Shepherd is suborbital research vehicle. Vertically integrated company in Kent, WA and Culbertson County TX. On second increment of vehicle that originally flew in 2006 (he was missing from the noon press conference). Separable crew capsule which separates at apogee and lands separately under parachutes — propulsion lands under powered landing. Reaching out to research community to better understand their needs for requirements development and how to work together. Can support three or more researchers or equipment racks, which are flexible in configuration. Also standard interface for customer racks.

David Masten, Masten Space Systems:

Vertical takeoff, vertical landing. Southwest turn around in 20 minutes — they’re shooting for the same thing. Currently at 45 minutes. Not worrying about people yet — want to have thousands of safe landings first. Quick iterations for rapid development. Won Lunar Lander Challenge, have over seventy flights under their belt. Xombie has most flight time, Xoie won LLC. Xaero has a composite shell for aerodynamics, will go to thirty kilometers. Four flights planned for CRuSR, engine on, engine relight, hundred thousand feet. Xogdor is Xaero with bigger tanks, and will do a hundred kilometers, to buy down risk on future vehicles.

Alan Stern: Five different companies with different approaches, and total private investment on the order of a billion dollars. This is a serious industry.

Jeff Greason

US government space efforts in difficulty if not crisis. Could be talking about almost anything in space — reconnaissance satellites, human spaceflight BEO. Long-time problem, growing in severity, and it’s a crisis because legacy systems being called on to do things that they were never designed to do in terms of lifetime, but every time we try to replace, go over budget or get cancelled or reduced in scope, so that they never serve as replacement for what we used to have. When you find time and again that goals exceed resources, you can either downscope goals, get more resources, or change the game. Human spaceflight is not a luxury — need a frontier, need a place to maintain dynamism, and find elbow room. DoD is definitely not a luxury when it comes to recon, but all replacements are not working. Scaling back goals is not an option. Financial crisis is now upon us. Non-defense discretionary is going to stay flat at best and probably go down. If NASA is going to even maintain flat budgets it will have to show more for the money (need more Buck Rogers for the bucks in order to get the bucks). Technology isn’t “ten times better this or stronger that”). It’s just a fancy word for knowing how to do something. One of the root causes of our current problems was the submergence of the NACA, and then Apollo, when NASA started to focus on technologies for its own needs rather than those of industry. ITAR has been another problem crippling our industry, and one of the more pernicious effects has been to starve the industry of funding for its own research. This conference is a small part of the problem, but it will play a key role in solving it. Suborbital vehicles will add a lot of technologies. Learned from Augustine that the addition of just a few key technologies can enable NASA to do a lot more with a lot less. Many of those technologies can be demonstrated suborbitally. Won’t get all the way where you need to be for human exploration, but can provide a critical foundation, and the more we can have had experiments on suborbitally, the more that the expensive orbital tests will be successful. Examples: cryo quick-disconnects, propellant acquisition and gauging in weightlessness, crucial for orbital propellant storage and transfer. Real pieces of hardware are sitting in real labs sitting at as far a level of maturity as there can be sitting in a lab, gathering dust, waiting for flights to mature in the environment. Frightening overruns in military satellites arise from untried tech in the satellite, but no ongoing efforts to mature those technologies in non-critical systems, and many of them can be tested suborbitally. ISS also provides excellent testbed (as will Bigelow) for longer-duration technology tests.

Pure science also important, but in doing science, they also push technology. At low flight rates, expendable launch systems are most cost effective, but as rate goes up, we want reusability. Shuttle demonstrated that a vehicles that requires so much effort to turn around have no advantage over and expendable. Suborbital flight is the “school” where we will learn how to do orbital reusable right. Most of those lessons will drive the recovery of a reusable upper stage. We have to return to the kind of environment we had between the Wright brothers and WW II, but it’s hard because of the government domination over the past half century. Have to develop environment in which many approaches are tried at hight rates. Science missions are a significant market segment for suborbital, and government is most substantial funding sources for science, so government policy is important. CRuSR important, but execution has been slowed with management changes and direction changes, and lack of current budget doesn’t help. Don’t expect to see the government become the lion’s share of an market segment, but it’s needed as an initial anchor to help overcome “wait and see” attitude from other customers. Availability of of government funds critical to prime the pump through transitional period. That’s the great value of government funding. Initial payloads can fly at considerable risk, and there should be no additional hurdles for this, and modest investments needed to encourage this industry could be the most important money spends in this decades in terms of technology payoff that allows us to open up the solar system.